%0 Journal Article %A CAO Ji %A LI Xiao-Xu %A QUE Xue %T Ensemble relation network with multi-level measure %D 2022 %R 10.19682/j.cnki.1005-8885.2022.1015 %J Journal of China Universities of Posts and Telecommunications %P 15-24 %V 29 %N 3 %X Fine-grained few-shot learning is a difficult task in image classification. The reason is that the discriminative
features of fine-grained images are often located in local areas of the image, while most of the existing few-shot learning image classification methods only use top-level features and adopt a single measure. In that way, the local features of the sample cannot be learned well. In response to this problem, ensemble relation network with multi-level measure (ERN-MM) is proposed in this paper. It adds the relation modules in the shallow feature space to compare the similarity between the samples in the local features, and finally integrates the similarity scores from the feature spaces to assign the label of the query samples. So the proposed method ERN-MM can use local details and global information of different grains. Experimental results on different fine-grained datasets show that the proposed method achieves good classification performance and also proves its rationality. %U https://jcupt.bupt.edu.cn/EN/10.19682/j.cnki.1005-8885.2022.1015